- 2万+
- 积分
- 2万+
- 粉丝
- 2220
- 获赞
- 429
- 评论
- 1万+
- 收藏
分类专栏
- 深度学习与机器学习 付费 103篇
- 生物信息与统计分析 付费 45篇
- 语音识别与实战 付费 14篇
- PaperReading 付费 60篇
- OpenStack 付费 18篇
- AutoML/AutoDL 1篇
- 分布式与并行计算 6篇
- 生成式AI与扩散模型 9篇
- 复杂网络与图学习 30篇
- Paddle Graph Learning
- Deep Graph Library 4篇
- PyTorch Geometric 6篇
- Dive into Graphs
- NetworkX 2篇
- StellarGraph
- 大语言模型与提示学习 16篇
- Nature Language Process 17篇
- 华为OD机试
- R语言与数据可视化 20篇
- Python编程实战与案例 39篇
- 可解释机器学习 13篇
- 强化学习 11篇
- 高等数学基础 13篇
- 机器学习竞赛 8篇
- 从入门到精通AI框架
- PyTorch学习笔记 7篇
- Tensorflow2实战 18篇
- Keras深度学习框架 3篇
- 昇思MindSpore
- 小分子与药物化学 5篇
- 工作面试 33篇
- Q&A 31篇
- BigData学习与实战 44篇
- Hadoop 28篇
- Spark学习指南与实战 8篇
- LeetCode编程题笔记 63篇
- Go语言实战 22篇
- RabbitMQ 14篇
- Windows&Linux操作系统 41篇
- 程序员学习笔记 13篇
- 算法与数据结构 52篇
- Spring Boot 8篇
- Java程序开发 56篇
- MySQL与MongoDB 8篇
- 云计算与虚拟化技术 13篇
- Ansible 2篇
- Kubernetes 5篇
- 区块链与金融科技 8篇
- IoT与智能设备 1篇
【可解释性机器学习】详解Python的可解释机器学习库:SHAP
阿布多锐: 你好,请问SHAP是个4维输入的模型?
怎么又出bug 了: 数据应该就是波士顿房价数据集: import numpy as np import pandas as pd data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) X = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) y = raw_df.values[1::2, 2]
m0_54260929: isEmpty没有忽略空格参数,是以是否为空和是否存在为判断依据。而isBlank忽略了空格参数。
Yesung_Cloud1106: 您好,我想问一下您的shap版本是多少
加油小王!!: 你好,有HGBn-ACM数据集吗,我打开连接之后显示的是不存在