- 8292
- 积分
- 1032
- 粉丝
- 982
- 获赞
- 221
- 评论
- 4225
- 收藏
分类专栏
- 大厂面试高频题之数据结构与算法 269篇
- 大厂算法岗机器学习深度学习面试题 122篇
- 个性化推荐系统 36篇
- 大厂人工智能技术概览 56篇
- 国考 83篇
- 数据挖掘 86篇
- 软件工程 31篇
- 计算机网络 73篇
- oracle 69篇
- 计算机组成原理 20篇
- c++ 34篇
- 操作系统 64篇
- LeetCode高频Top150题 76篇
一文看懂推荐系统:召回01:基于物品的协同过滤(ItemCF),item-based Collaboration Filter的核心思想与推荐过程
Ocean_Hai22: 引用「把兴趣分数跟相似度分数相乘,如果指回的物品ID有重复的,就去重。把分数加起来,得到每个物品的兴趣分数」 如果你将兴趣分数与相似度(0-1之间)相乘,那么最终的结果将受到兴趣分数范围的显著影响。例如,如果相似度为0.8,而兴趣分数是1,则最终得分仅为0.8;但如果兴趣分数是5,则最终得分为4。这会导致兴趣分数在最终得分中占据主导地位,违背了相似度为主导因素
树帽: 第一次做推荐系统,涨了不少知识,谢谢大佬
Iverson309: 请问这句话如何理解呀:应该把cos(a bi)调整为cos(a bi)- log(pi),这样可以纠偏,人为地把这个负样本的概率减掉,避免过分打压热门的物品 为什么可以理解微减去负样本的概率呢?
Never-guess: 赞同,我也发现写错了