AI模型大杀器----Amazon SageMaker 实现高精度猫狗分类
前言:
Hello大家好,我是Dream。 最近受邀参与了 亚马逊云科技【云上探索实验室】 活动,基于他们的sagemaker实现了机器学习中一个非常经典的案例:猫狗分类。最让我惊喜的是的模型训速度比想象中 效果要好得多,而且速度十分迅速,而且总体感觉下来整个过程十分便利,使用起来也是得心应手。 那接下来跟随我的视角,来一起复盘一下整体做的过程,来感受一下其强大便利之处。
在我们的日常生活和学习中,尤其是针对人工智能专业的学生以及工作者而言,机器学习、神经网络是我们每天都要接触的工作,复杂多样的环境配置以及高要求的运行配置总让我们十分头疼,正因此我推荐大家去使用AmazonSageMaker,轻松解决你的烦恼。Amazon SageMaker是亚马逊云计算(Amazon Web Service)的一项完全托管的机器学习平台服务,算法工程师和数据科学家可以基于此平台快速构建、训练和部署机器学习 (ML) 模型,而无需关注底层资源的管理和运维工作。它作为一个工具集,提供了用于机器学习的端到端的所有组件,包括数据标记、数据处理、算法设计、模型训练、训练调试、超参调优、模型部署、模型监控等,使得机器学习变得更为简单和轻松;同时,它依托于 Amazon 强大的底层资源,提供了高性能 CPU、GPU、弹性推理加速卡等丰富的计算资源和充足的算力,使得模型研发和部署更为轻松和高效。
Amazon SageMaker由以下三大主要部分组成:
创作: 无需进行任何设置,使用Jupyter Notebook IDE
就能进行数据探索、清洁与预处理。我们可以在常规实例类型或GPU驱动型实例当中运行此类工作负载。
模型训练: 一项分布式模型构建、训练与验证服务。我们可以利用其中的内置常规监督与无监督学习算法及框架,或者利用Docker容器
创建属于自己的训练机制。其模型训练规模可囊括数十个实例,以支持模型构建加速。训练数据读取自S3,训练后的模型成果亦可存放在S3存储桶内。最终得出的模型结果为数据相关模型参数,而非模型当中进行推理的代码。
模型托管: 模型托管服务可配合HTTP端点
以调用模型进行实时推理。这些端点可进行规模扩展,从而支持实际流量;我们也可以同时对多套模型进行A/B测试。此外,我们也可以使用内置的SDK构建这些端点,或者选择Docker镜像提供自己的配置选项。
上述组成部分皆可独立使用,这意味着Amazon SageMaker将能够轻松填补现有流程中的空白环节。换句话来说,当开发人员以端到端方式使用该服务时,将能够享受到由其提供的强大功能。那本文我们就来使用Amazon SageMaker快速实现高精度猫狗分类问题。
http://aimaksen.bslience.cn/cats_and_dogs_filtered.zip,实验中为了训练方便,我们取了一个较小的数据集。
path_to_zip = tf.keras.utils.get_file(
'data.zip',
origin='http://aimaksen.bslience.cn/cats_and_dogs_filtered.zip',
extract=True,
)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')
train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')
BATCH_SIZE = 32
IMG_SIZE = (160, 160)
https://dev.amazoncloud.cn/experience?trk=cndc-detail&sc_medium=corecontent&sc_campaign=product&sc_channel=csdn
🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
path_to_zip = tf.keras.utils.get_file(
'data.zip',
origin='http://aimaksen.bslience.cn/cats_and_dogs_filtered.zip',
extract=True,
)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')
train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')
BATCH_SIZE = 32
IMG_SIZE = (160, 160)
🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
- 3万+
- 积分
- 8万+
- 粉丝
- 2万+
- 获赞
- 1万+
- 评论
- 2万+
- 收藏
分类专栏
- 零基础学Python:Python从0到100最新最全教程 付费 101篇
- 云原生 付费 8篇
- 机器学习、计算机视觉、神经网络实战 付费 19篇
- Python游戏开发 付费 15篇
- Python刷题-数据结构与算法 付费 76篇
- Python 15篇
- Dream好书推荐 19篇
- 计算机视觉 17篇
- 神经网络 35篇
- 前沿技术 10篇
- 机器学习实战 17篇
- 机器学习笔记 21篇
- bug解决 1篇
- 观点分享
- 知识图谱 1篇
- Dream的茶话会 54篇
- 随笔 9篇
- 深度学习 6篇
- OpenCV 12篇
- 爬虫 7篇
- 刷题游乐园 15篇
- Python100道例题 5篇
- 算法图解 10篇
- 游戏开发 3篇
- Pycharm 3篇
- 有趣的的数据结构和算法 16篇
- 总结 20篇
- 海龟画图 4篇
Python从0到100(八十四):神经网络-卷积神经网络训练CIFAR-10数据集
守护者170: 文章为我提供了宝贵的见解和学习资源,让我能够增长知识和技能,感谢分享!
有一只柴犬: 文章干货满满,内容清晰,感谢分享
是Dream呀: 好的 完善一些
对不起,我辜负了你: 写的这个东西我感觉看不懂啊?!这个源代码是做什么用的啊?你既然把每个模块部分各写了出来,那为什么不在结尾做一个合并呢?